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1. INTRODUCTION 

The subject of breakup of liquid drops has important implications in a variety of fields, namely, 
but not specifically, meteorology, aerosol and hydrosol science, and emulsification processes. As 
a result, an extensive literature, covering a wide spectrum of related theoretical and experimental 
works, has been generated over the years (Clift et  al. 1978; Pilch & Erdman 1987; Hsiang & Faeth 
1992 and references therein). A major goal of many of these studies has been to provide information 
on and explanations of how the external flow conditions affect the critical Weber number, We, ,  
a quantity representing the minimum force or energy required to cause primary breakup of the 
liquid drop. 

Numerous experimental investigations have dealt with the breakup of liquid drops in gases due 
to shocks. Here, in general, the Weber number, We, is defined as 

We = Pc U2do , [1] 
(7 

where PG is the gas density, (7 is the interfacial tension and U and do are the initial relative gas velocity 
and drop diameter, respectively. An important finding in many of these works has been the existence 
of several regimes or modes of drop disintegration. These regimes, which are termed "bag", 
"multimode" and "shear", have been observed to occur at different levels of We. For a comprehensive 
description and analysis of these regimes, the reader is referred to Hsiang & Faeth (1992). 

Of further interest to these studies has been the effect of drop viscosity on the breakup Weber 
number, Web, for the different modes. All works dealing with this effect concluded that an increase 
in the drop viscosity leads to a rise in Webr , the reason being that an additional amount of energy 
is needed to overcome the internal viscous dissipation, induced by drop deformation and mixing 
within the liquid phase. 

To theoretically predict Web~ in the presence of liquid-phase viscosity, the conventional 
approaches have, in one way or another, implemented the momentum equations (Kitscha & 
Kocamustafaogullari 1989; Tarnogrodzki 1993). The intention here, however, is different in that 
we focus on using energy-related arguments to provide a semi-empirical correlation relating Web, 
with viscosity and other properties. As we shall demonstrate, the resulting correlation could be 
applicable to a wide range of We, corresponding to the various modes of drop breakup by shocks. 

2. PROBLEM F O R M U L A T I O N  

Following an energy approach similar to one taken earlier (Cohen 1991), we assume that the 
energy, E~,r, needed to break a viscous drop having an initial diameter do equals the breakup energy 

tThis work was performed while the author was on leave at the Department of Chemical Engineering, Yale University, 
New Haven, CT, U.S.A. 
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required in the limit of zero viscosity, i.e. F--..Tbr0JL--t'0), where/~L is the viscosity of the liquid drop, 
raised by an amount equivalent to the viscous energy dissipated within the drop during deformation 
and breakup. Letting & represent this viscous dissipation, the above can then be written as 

E~b, = E~r (m--'0) + & .  [21 

In other words, the increase in Web, when viscosity is present, is being attributed to the extra 
energy dissipated within the liquid drop. Since dissipation is always positive, one should then expect 
that an extra quantity of energy, in addition to the critical energy at zero viscosity, is to be supplied 
in order for the drop to burst. This is consistent with the observed rise in the drop Web,, when 
the liquid-phase viscosity is not zero. 

Dividing both sides of [2] by the initial surface energy, nod{, yields 

ETbr ETbr (UL'*0) g v 
q [3] 

nad2o - nad2o nad~ " 

Obviously, the terms appearing above are dimensionless groups, two of which involve the "impact" 
energy absorbed by the drop, divided by the initial surface energy. The breakup energy term, Erb, 
which can be expressed as the kinetic energy imparted to the drop by the gas (Cohen 1991), i.e. 

nd~po U 2 
E~b, = ~ - -  2 ' [41 

may also be viewed as the pressure differential induced by the external flow, Pa U2/2, acting on the 
drop, multiplied by the volume of the drop, nd~/6. Combining the above with [1] yields 

12E~,,(~L--,0) 
Webr (/'/L-+ O) --" nad~ [5a] 

and 

12ETbr 
Webr = nod~ '  [5b] 

where We~(/~L~0) is the breakup Weber number in the limit of zero drop viscosity, and Web, is 
that of a viscous drop. 

Based on dimensional and physical grounds, we express Ev as 

Ev ~ #t Vmix do 2 [61 

for a Newtonian liquid. Here, V~t, is an effective internal "mixing rate", which we have introduced 
as a lumped parameter to reflect the mixing motions within the drop prior to breakup. The 
proportionality constant of order unity, which is supposed to appear in [6], has, for convenience, 
been embedded in Vm,. Moreover, while Vmix would most likely depend on the type of external 
flow, be it couette, parallel, hyperbolic etc., as well as the magnitude of the We, we plan to treat 
it as empirical, and seek to extract its behavior from the available experimental data. 

Substituting [5] and [6] into [3] yields 

Webr 
Web,(Nv~0) 

= 1 [71 
1 + K*Nv 

after some rearrangement. Here, K* is simply 

12 

K* - We~(Nv~0) Vmix [8] 

and Nv, which is the viscosity or Ohnesorge number, is defined as 

Nv -= #L ' [91 
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with PL being the liquid-drop density. By containing Vm~, therefore, K* may, in general, be 
expressible as a function of  the several parameters involved; i.e. 

K* = K* (We~, Webr(Nv--O), Nv, P-~G ) . [10] 

Assessing the behavior of K* from the available experimental data constitutes the focal point of  
the next section. 

3. ANALYSIS  AND C O N C L U S I O N S  

It is now important to emphasize that, in order to incorporate the effects of the drop viscosity, 
#L, into a more general theoretical framework, Hinze (1955) proposed the following relation: 

Webr 

Web,(Nv~0) 
= 1, [111 

1 + fn(Nv) 

where fn(Nv) is a function that depends on Nv in such a way that it approaches zero as N v ~ 0 .  
How this function varies with Nv has been a topic of investigation, and, as a result, certain 
power-law type expressions, one being (Brodkey 1969) 

Webr = 12(1 + 1.077Nv1'6), [12] 

which is for bag breakup [where, for this case, Web,(Nv--*0),~ 12], have been proposed based 
strictly on empiricism. Nonetheless, in view of the similarity between [7] and [I 1], it seems that an 
attempt to deduce this functional dependence using the energy-conservation arguments discussed 
in the previous section should be worthwhile. 

Our objective now is to determine the behavior of K*, as laid down in [10], that would make 
[11] consistent with [7]. Obviously, based on a comparison of the two equations, the following form 
for K*--i.e. one that would make the denominator of [7] a function of  Nv only---could be 
recommended: 

K* = K*(Nv) or constant; [13] 

suggesting that K* either depends only on Nv, or, more simply, it is a numerical constant. 
By virtue of  [7], the dependence of  K* on Nv can now be deduced easily from We~ vs Nv data, 

plotted as {Web,/Webr(NV---,0)- 1} VS Nv on a log-log scale. Applying this to the data available 
to us [figure 4 of  Hinze (1955), figure 2 of Pilch & Erdman (1987) and figure 1 of  Hsiang & Faeth 
(1992)] gave rise to plots quite similar to that in figure 1 of  this paper. 
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Figure 1. Plot of {We~/Webr(Nv~0) - 1} vs Nv: O, shear-mode breakup data obtained from Hsiang 
& Faeth (1992); A, data of Hinze (1955). 
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Figure 2. The left-hand side of [7] plotted vs Nv. Sources for the data points A-E, along with other 
pertinent information, are given in table 1. 

We should mention, however, that all the data we examined, except for Hinze's which is included 
in figure 1, display a significant amount of "noise" at very low values of Nv when plotted this way. 
The reason for this may be that determinations of breakup regimes are rarely highly accurate, a 
limitation that deems the scatter at small values of Nv reasonable. Nonetheless, for almost all the 
data used here, the noise disappears at higher Nv, i.e. Nv >~ 0.01, and linear behaviors with 
slopes very close to unity do indeed emerge [see, for example, the shear breakup mode, which is 
also shown in figure 1]. This, along with the fact that all {Webr/Webr(NV~0 ) -- 1) values must 
approach zero as Nv~0 ,  could suggest that K* might very well be a constant, independent of Nv. 

With this in mind, in figure 2 we have replotted the data according to the formulation of [7]. 
The liquid-liquid data present in figure 2 of Pilch & Erdman (1987), however, have been excluded 
in order to maintain the density ratio at a level pertinent to liquid-in-gas systems. 

It should be pointed out that for every data set, each corresponding to a specific regime of 
breakup, we found it necessary to adjust the constant K* slightly in order to force the left-hand 
side of [7] to equal, or at least come close to unity, as required. The dependence of K* on 
Webr(Nv~0) is displayed in figure 3, and its numerical values, along with other relevant 
information, are supplied in table 1. Overall, K* averages at 1.4, which is of the order of unity, 
has a standard deviation of about 0.38, and displays a trend that leans more towards constant 
behavior. This further supports our previous contention that K*, as given by [13], is either a 
numerical constant, or, at most, dependent only on Nv. For curiosity, the value of K* for the 
liquid-liquid data in figure 2 of Pilch & Erdman (1987) was also computed. This was found to be 
about 1.3, which lies well within the neighborhood. 

Based on the above, therefore, the semi-empirical formulation of [7] can be recast into 

Webr 
W e ~ , ( N v ~ 0 )  

1 + K*Nv (where 1.0 ~< K* ~< 1.8). [14] 

This is expected to hold for 10 < Webr(Nv--~0) < 10 2, covering the entire range of the three modes 
of shock-induced drop-breakup regimes considered here. As to which is better, [14] or [12], where 
Nv carried a power different from 1, one could argue that it might be a matter of personal choice 
since, based strictly on visual judgment, both seem to represent the given experimental data 
reasonably well. Equation [14], notwithstanding, may be more appealing simply because (i) it has 
been derived based on the energy-conservation principle and (ii) its application is not limited to 
a single breakup mode, whereas [12] is applicable only to bag breakup. 
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Figure 3. K* plotted vs the parameter Webr(NV~0): O, the value for K* extracted from the liquid-liquid 
data in figure 2 of Pilch & Erdman (1987); A, liquid-gas data. The horizontal line is the average K*. 

Table 1. Description of the data in figure 2 

Data Source Breakup mode  W%r(NV~0 ) K* 

A Figure 4 of Hinze (1955) Bag 13 1.0 
B Figure 1 of Hsiang & Faeth (1992) Bag 13 1.5 
C Figure 1 of Hsiang & Faeth (1992) Shear 80 1.0 
D Figure 1 of Hsiang & Faeth (1992) Multimode 35 1.8 
E Figure 2 of Pilch & Erdman (1987) Bag 12 1.7 

Moreover, substituting K* = 1.4 into [8] and rearranging, provides the following dimensionless 
group involving Vmi~ : 

Vmix / pLd° ~ 0.366 Webr(NV--*0); [15] 

which should remain valid for density ratios, PL/Pc, relevant to liquid-gas systems. With the 
dynamics of the drop fragmentation manifested within the single parameter Vmix, the fact that it 
is not influenced by viscosity could suggest that the breakup mode belonging to any given regime 
remains independent of  the liquid viscosity, and, thereby, it is preserved. In other words, each mode 
of  breakup maintains its form, even as the liquid viscosity is changed. This seems consistent with 
experiments [see, for instance, figure 1 of Hsiang & Faeth (1992)], whereby upon selecting a certain 
breakup regime, which would be describable by its own We~(Nv~0) ,  and beginning at a viscosity 
number close to zero, a gradual increase in Nv raises only the value of  Webr and, apparently, does 
not alter the mode of  breakup. This, clearly, is indicative of self-preservation. Also, realizing that 
Webr is proportional to pa U 2, it is then easy to conclude from [15] that the mixing rate within the 
drop is related directly to the external dynamic pressure field in the limit Nv--,0. 

Lastly, what this work offers is a correlation, deduced by elementary energy-based arguments, 
relating Webr to Nv. The simple idea that much of the dynamics of drop breakup could be lumped 
into a single parameter, Vm~x, may call for a more definitive study of the subject from this 
perspective. 
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